The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision.
نویسندگان
چکیده
BACKGROUND The resting motor threshold (rMT) is the basic unit of transcranial magnetic stimulation (TMS) dosing. Traditional methods of determining rMT involve finding a threshold of either visible movement or electromyography (EMG) motor-evoked potentials, commonly approached from above and below and then averaged. This time-consuming method typically uses many TMS pulses. Mathematical programs can efficiently determine a threshold by calculating the next intensity needed based on the prior results. Within our group of experienced TMS researchers, we sought to perform an illustrative study to compare one of these programs, the Maximum-Likelihood Strategy using Parameter Estimation by Sequential Testing (MLS-PEST) approach, to a modification of the traditional International Federation of Clinical Neurophysiology (IFCN) method for determining rMT in terms of the time and pulses required and the rMT value. METHODS One subject participated in the study. Five researchers determined the same subject's rMT on 4 separate days-twice using EMG and twice using visible movement. On each visit, researchers used both the MLS-PEST and the IFCN methods, in alternating order. RESULTS The MLS-PEST approach was significantly faster and used fewer pulses to estimate rMT. For EMG-determined rMT, MLS-PEST and IFCN derived similar rMT, whereas for visible movement MLS-PEST rMT was higher than for IFCN. CONCLUSIONS The MLS-PEST algorithm is a promising alternative to traditional, time-consuming methods for determining rMT. Because the EMG-PEST method is totally automated, it may prove useful in studies using rMT as a quickly changing variable, as well as in large-scale clinical trials. Further work with PEST is warranted.
منابع مشابه
A comparison of relative-frequency and threshold-hunting methods to determine stimulus intensity in transcranial magnetic stimulation.
OBJECTIVE Stimulation intensity (SI) in transcranial magnetic stimulation is commonly set in relation to motor threshold (MT), or to achieve a motor-evoked potential (MEP) of predefined amplitude (usually 1 mV). Recently, IFCN recommended adaptive threshold-hunting over the previously endorsed relative-frequency method. We compared the Rossini-Rothwell (R-R) relative-frequency method to an adap...
متن کاملActive and resting motor threshold are efficiently obtained with adaptive threshold hunting
Transcranial magnetic studies typically rely on measures of active and resting motor threshold (i.e. AMT, RMT). Previous work has demonstrated that adaptive threshold hunting approaches are efficient for estimating RMT. To date, no study has compared motor threshold estimation approaches for measures of AMT, yet this measure is fundamental in transcranial magnetic stimulation (TMS) studies that...
متن کاملComparison between adaptive and fixed stimulus paired-pulse transcranial magnetic stimulation (ppTMS) in normal subjects
Objectives: Paired-pulse TMS (ppTMS) examines cortical excitability but may require lengthy test procedures and fine tuning of stimulus parameters due to the inherent variability of the elicited motor evoked potentials (MEPs) and their tendency to exhibit a ‘ceiling/floor effects’ in inhibition trials. Aiming to overcome some of these limitations, we implemented an ‘adaptive’ ppTMS protocol and...
متن کاملReliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal
Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...
متن کاملThe Effect of rTMS with Rehabilitation on Hand Function and Corticomotor Excitability in Sub-Acute Stroke
Objectives: Stroke is the leading cause of long-term disability. Hand motor impairment resulting from chronic stroke may have extensive physical, psychological, financial, and social implications despite available rehabilitative treatments. The best time to start treatment for stroke, is in sub-acute period. Repetitive transcranial magnetic stimulation (rTMS) is a method of stimulating and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of ECT
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2004